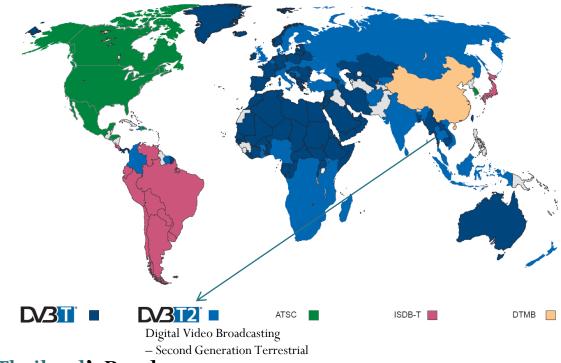


### ECS455: Chapter 5 OFDM



**Office Hours:** 


Dr.Prapun Suksompong www.prapun.com Library (Rangsit) Mon 16:20-16:50 BKD 3601-7 Wed 9:20-11:20

#### **OFDM** Applications

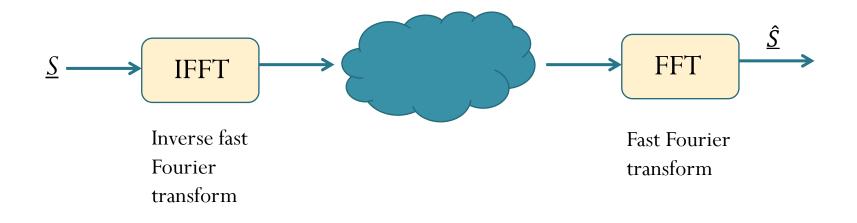
- 802.11 Wi-Fi: a/g/n/ac versions
- **DVB-T** (Digital Video Broadcasting Terrestrial)
  - terrestrial digital TV broadcast system used in most of the world outside North America
- DMT (the standard form of **ADSL** Asymmetric Digital Subscriber Line)
- WiMAX, LTE (OFDMA)

| Wireless                                                                                                    | Wireline                                                 |  |  |  |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|
| IEEE 802.11a, g, n (WiFi) Wireless LANs                                                                     | ADSL and VDSL broadband access via POTS copper wiring    |  |  |  |
| IEEE 802.15.3a Ultra Wideband (UWB) Wireless PAN                                                            | MoCA (Multi-media over Coax<br>Alliance) home networking |  |  |  |
| IEEE 802.16d, e (WiMAX), WiBro, and HiperMAN Wireless MANs                                                  |                                                          |  |  |  |
| IEEE 802.20 Mobile Broadband Wireless Access (MBWA)                                                         | DLC (Deuver Line Communication)                          |  |  |  |
| DVB (Digital Video Broadcast) terrestrial TV systems: DVB-T,<br>DVB-H, T-DMB, and ISDB-T                    |                                                          |  |  |  |
| DAB (Digital Audio Broadcast) systems: EUREKA 147, Digital<br>Radio Mondiale, HD Radio, T-DMB, and ISDB-TSB | PLC (Power Line Communication)                           |  |  |  |
| Flash-OFDM cellular systems                                                                                 |                                                          |  |  |  |
| 3GPP UMTS & 3GPP@ LTE (Long-Term Evolution) and 4G                                                          | ]                                                        |  |  |  |

#### Side Note: Digital TV



Japan: Starting July 24, 2011, the analog broadcast has ceased and only digital broadcast is available.
US: Since June 12, 2009, full-power television stations nationwide have been broadcasting exclusively in a


digital format.

#### Thailand's Roadmap:

| 2012 | 2012 2013                                                               |                      | 2014                |               | 20         | 2015                           |  | 2020/2022 |
|------|-------------------------------------------------------------------------|----------------------|---------------------|---------------|------------|--------------------------------|--|-----------|
| 2555 | 2556                                                                    |                      | 2557                |               | 2          | 2558                           |  |           |
|      | กระบวนการออกใบอนุณาต<br>โครงข่ายและโครงสร้าง<br>พืนฐานสำหรับ Digital TV |                      | กระบวนการออกใบอนุ   | ณาต Mobile TV | กระบวนการส | ออกใบอนุณาต Digital TV ชวงที 2 |  |           |
|      | กระบวนการออกใบอนุญาต Digital TV ชวงที่ 1                                |                      |                     |               | 80         |                                |  |           |
| 3    | ไตรมาส 4 ปี 2012                                                        | ไตรมาส 1-2 ปี 2013   | ไตรมาส 4 ปี 2013    |               |            | เริ่มกระบวนการ                 |  | -         |
|      | เกิดชองสาธารณะ 12 ชอง เ                                                 | เทิดชองธุรกิจ 24 ชอง | เกิดชองชุมชน 12 ชอง |               |            | Analog Switch Off (ASO)        |  |           |

#### OFDM: Overview (1)

• Let  $\underline{S} = (S_1, S_2, \dots, S_N)$  contains the information symbols.



#### OFDM: Overview (2)

- Let  $\underline{S} = (S_1, S_2, \dots, S_N)$  be the information symbol.
- The discrete baseband OFDM modulated symbol can be expressed as

 $s(t) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} S_k \exp\left(j\frac{2\pi kt}{T_s}\right), \quad 0 \le t \le T_s$ 

 $=\sum_{k=0}^{N-1} S_k \frac{1}{\sqrt{N}} \mathbf{1}_{[0,T_s]}(t) \exp\left(j\frac{2\pi kt}{T_s}\right)$ 

 $c_k(t)$ 

Some references may use different constant in the front Some references may start with different time interval, e.g.  $[-T_s/2, +T_s/2]$ 

Note that:

$$\operatorname{Re}\left\{s(t)\right\} = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \left(\operatorname{Re}\left\{S_{k}\right\} \cos\left(\frac{2\pi kt}{T_{s}}\right) - \operatorname{Im}\left\{S_{k}\right\} \sin\left(\frac{2\pi kt}{T_{s}}\right)\right)$$

#### Single-User OFDM

## In this section, we shall focus on the Single-user case of OFDM.

#### Motivation

# Why do we need OFDM?

- First, we study the wireless channel.
- There are a couple of difficult problems in communication system over wireless channel.
- Also want to achieve high data rate (throughput)

## ECS455: Chapter 5 OFDM

5.1 Wireless Channel (A Revisit)



**Office Hours:** 

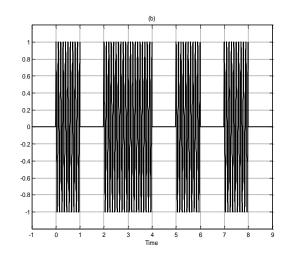
Dr.Prapun Suksompong <u>www.prapun.com</u> Library (Rangsit) Mon 16:20-16:50 BKD 3601-7 Wed 9:20-11:20

#### Single Carrier Digital Transmission

• Baseband:

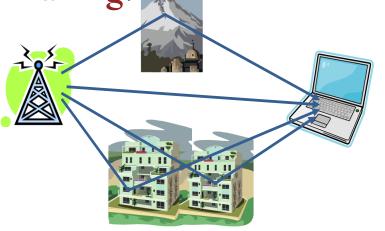
$$s(t) = \sum_{k=0}^{N-1} s_k p(t - kT_s)$$

$$p(t) = \mathbf{1}_{[0,T_s)}(t) = \begin{cases} 1, & t \in [0,T_s) \\ 0, & \text{otherwise.} \end{cases}$$

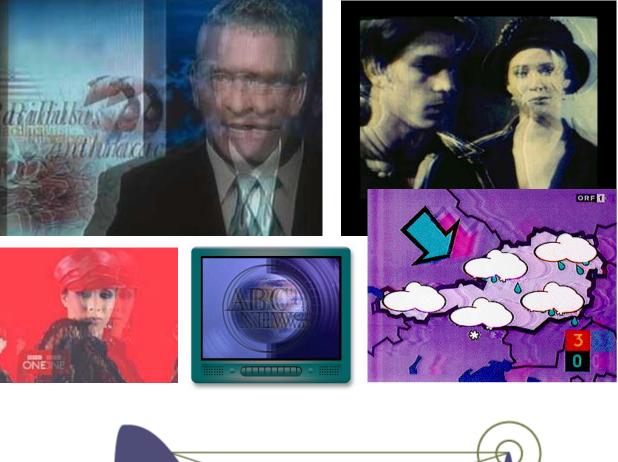

• Passband:

-0.2

0


2 3 4 5 6 7 8

 $x(t) = \operatorname{Re}\left\{s(t)e^{j2\pi f_{c}t}\right\}$ 




#### **Multipath Propagation**

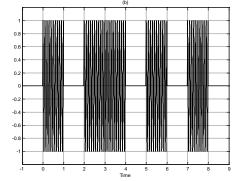
- In a wireless mobile communication system, a transmitted signal propagating through the wireless channel often encounters multiple reflective paths until it reaches the receiver
- We refer to this phenomenon as **multipath propagation** and it causes fluctuation of the amplitude and phase of the received signal.
- We call this fluctuation **multipath fading**.



#### Similar Problem: Ghosting



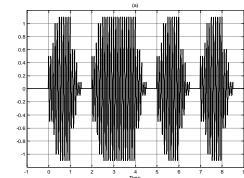
Signal received via reflection off hill

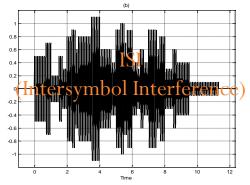

#### Wireless Comm. and Multipath Fading

The signal received consists of a number of reflected rays, each characterized by a different amount of attenuation and

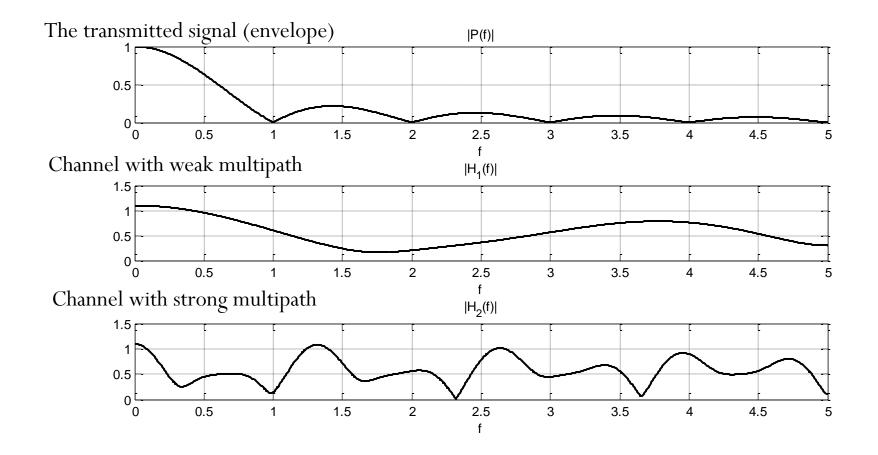
$$r(t) = x(t) * h(t) + n(t) = \sum_{i=0}^{\nu} \beta_i x(t - \tau_i) + n(t)$$

$$h(t) = \sum_{i=0}^{\nu} \beta_i \delta(t - \tau_i)$$


 $h_1(t) = 0.5\delta(t) + 0.2\delta(t - 0.2T_s) + 0.3\delta(t - 0.3T_s) + 0.1\delta(t - 0.5T_s)$  $h_2(t) = 0.5\delta(t) + 0.2\delta(t - 0.7T_s) + 0.3\delta(t - 1.5T_s) + 0.1\delta(t - 2.3T_s)$ 




12


Direct line-of-sight

delay.





#### **Frequency Domain**



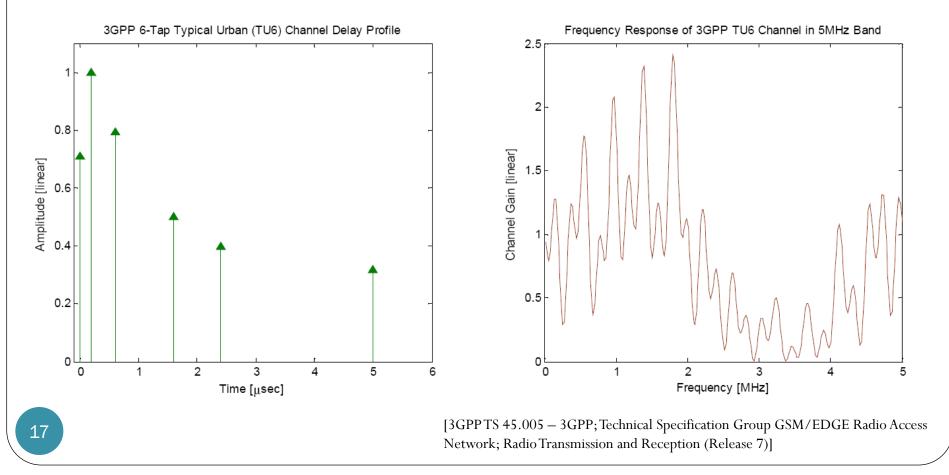
#### Observation

- Delay spread causes ISI
- Observation: A general rule of thumb is that a delay spread of less than 5 or 10 times the symbol width will not be a significant factor for ISI.
- Solution: The ISI can be mitigated by reducing the symbol rate and/or including sufficient guard times between symbols.

#### COST 207 Channel Model

 Based on channel measurements with a bandwidth of 8– 10MHz in the 900MHz band used for 2G systems such as GSM.

| Path # | Rural Area<br>(RA) |       | Typical Urban<br>(TU) |       | Bad Urban<br>(BU) |       | Hilly Terrain<br>(HT) |       |  |
|--------|--------------------|-------|-----------------------|-------|-------------------|-------|-----------------------|-------|--|
| Å.     | Delay              | Power | Delay                 | Power | Delay             | Power | Delay                 | Power |  |
|        | (µs)               | (dB)  | (µs)                  | (dB)  | (µs)              | (dB)  | (µs)                  | (dB)  |  |
| 1      | 0                  | 0     | 0                     | -3    | 0                 | -2.5  | 0                     | 0     |  |
| 2      | 0.1                | -4    | 0.2                   | 0     | 0.3               | 0     | 0.1                   | -1.5  |  |
| 3      | 0.2                | -8    | 0.5                   | -2    | 1.0               | -3    | 0.3                   | -4.5  |  |
| 4      | 0.3                | -12   | 1.6                   | -6    | 1.6               | -5    | 0.5                   | -7.5  |  |
| 5      | 0.4                | -16   | 2.3                   | -8    | 5.0               | -2    | 15.0                  | -8.0  |  |
| 6      | 0.5                | -20   | 5.0                   | -10   | 6.6               | -4    | 17.2                  | -17.7 |  |

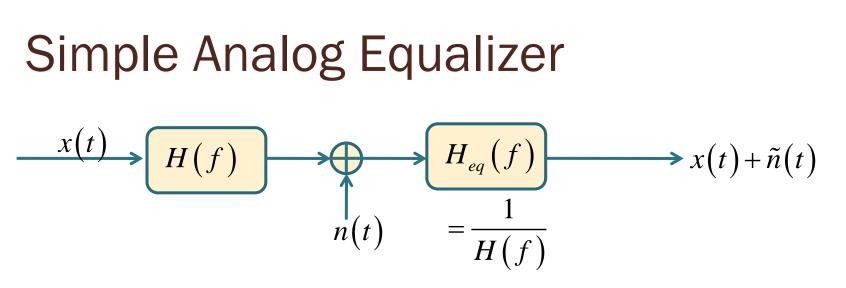

[Fazel and Kaiser, 2008, Table 1-1]

#### **3GPP LTE Channel Modelss**

|             | Extended Pedestrian A |       | Extended Vehicular A |       | Extended Typical Urban |       |  |
|-------------|-----------------------|-------|----------------------|-------|------------------------|-------|--|
| Path number | (EPA)                 |       | (EVA)                |       | (ETU)                  |       |  |
|             | Delay                 | Power | Delay                | Power | Delay                  | Power |  |
|             | (ns)                  | (dB)  | (ns)                 | (dB)  | (ns)                   | (dB)  |  |
| 1           | 0                     | 0     | 0                    | 0     | 0                      | -1    |  |
| 2           | 30                    | -1    | 30                   | -1.5  | 50                     | -1    |  |
| 3           | 70                    | -2    | 150                  | -1.4  | 120                    | -1    |  |
| 4           | 90                    | -3    | 310                  | -3.6  | 200                    | 0     |  |
| 5           | 110                   | -8    | 370                  | -0.6  | 230                    | 0     |  |
| 6           | 190                   | -17.2 | 710                  | -9.1  | 500                    | 0     |  |
| 7           | 410                   | -20.8 | 1090                 | —7    | 1600                   | -3    |  |
| 8           |                       |       | 1730                 | -12   | 2300                   | -5    |  |
| 9           |                       |       | 2510                 | -16.9 | 5000                   | -7    |  |

#### 3GPP 6-tap typical urban (TU6)

• Delay profile and frequency response of 3GPP 6-tap typical urban (TU6) Rayleigh fading channel in 5 MHz band.

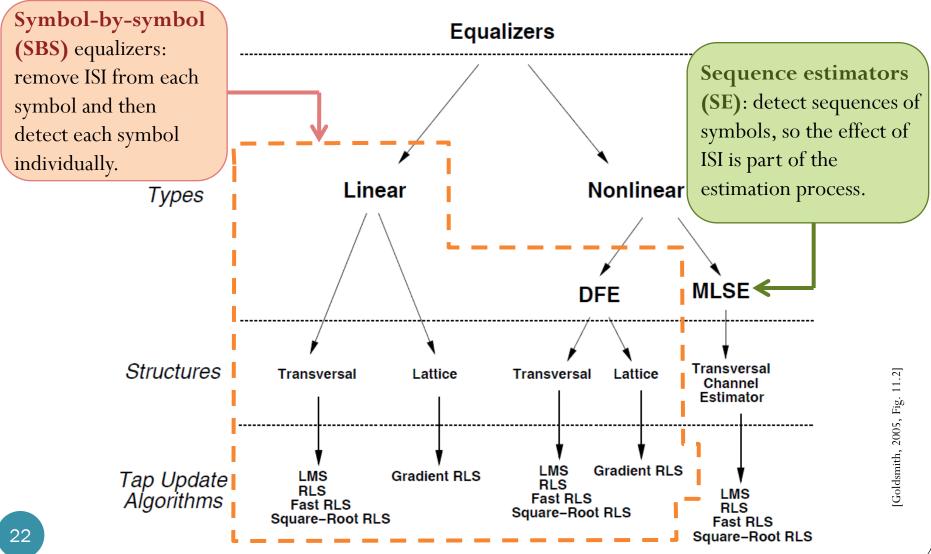



#### Equalization

- Chapter 11 of [Goldsmith, 2005]
- In a broad sense, **equalization** defines any signal processing technique used at the *receiver* to alleviate the ISI problem caused by delay spread. [Goldsmith, 2005]
- Higher data rate applications are more sensitive to delay spread, and generally require high-performance equalizers or other ISI mitigation techniques.
- Signal processing can also be used at the *transmitter* to make the signal less susceptible to delay spread.
  - Ex. spread spectrum and multicarrier modulation

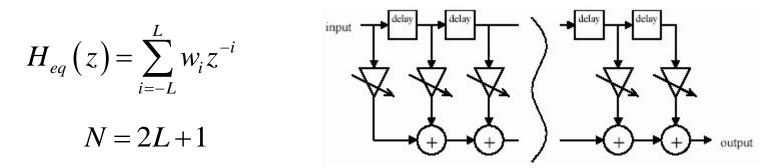
#### Equalizer design

- Need to balance ISI mitigation with noise enhancement
  - Both the signal and the noise pass through the equalizer
- Nonlinear equalizers suffer less from noise enhancement than linear equalizers, but typically entail higher complexity.
- Most equalizers are implemented digitally after A/D conversion
  - Such filters are small, cheap, easily tuneable, and very power efficient.
- The *optimal* equalization technique is **maximum likelihood sequence estimation (MLSE)**.
  - Unfortunately, the complexity of this technique (even when using **Viterbi algorithm**) grows exponentially with the length of the delay spread, and is therefore *impractical* on most channels of interest.




- Attempt to remove all ISI
- Disadvantages:
  - If some frequencies in the channel frequency response H(f) are greatly attenuated, the equalizer  $H_{eq}(f) = 1/H(f)$  will greatly enhance the noise power at those frequencies.
  - If the channel frequency response *H*(*f*) has a spectral null (= 0 for some frequency), then the power of the new noise is infinite.
- Even though the ISI effects are (completely) removed, the equalized system will perform poorly due to its greatly reduced SNR.

#### Linear vs. Non-linear Equalizers


- Need to balance mitigation of the effects of ISI with maximizing the SNR of the post-equalization signal.
- Linear digital equalizers
  - In general work by inverting the channel frequency response
  - Easy to implement and to understand conceptually
  - Typically suffer from more noise enhancement
  - Not used in most wireless applications
- Nonlinear equalizers
  - Do not invert the channel frequency response
  - Suffer much less from noise enhancement
  - Decision-feedback equalization (DFE) is the most common
    - Fairly simple to implement and generally performs well.

#### **Equalizer Types**



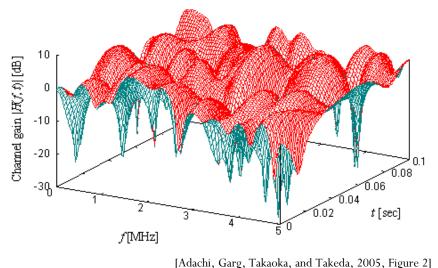
#### **Transversal Structure**

- Linear and nonlinear equalizers are typically implemented using a transversal or lattice structure.
- The transversal structure is a filter with N 1 delay elements and N taps with tunable complex weights.



- The length of the equalizer *N* is typically dictated by implementation considerations
  - Large *N* usually entails higher complexity.

#### **Time-varying Multipath Channel**

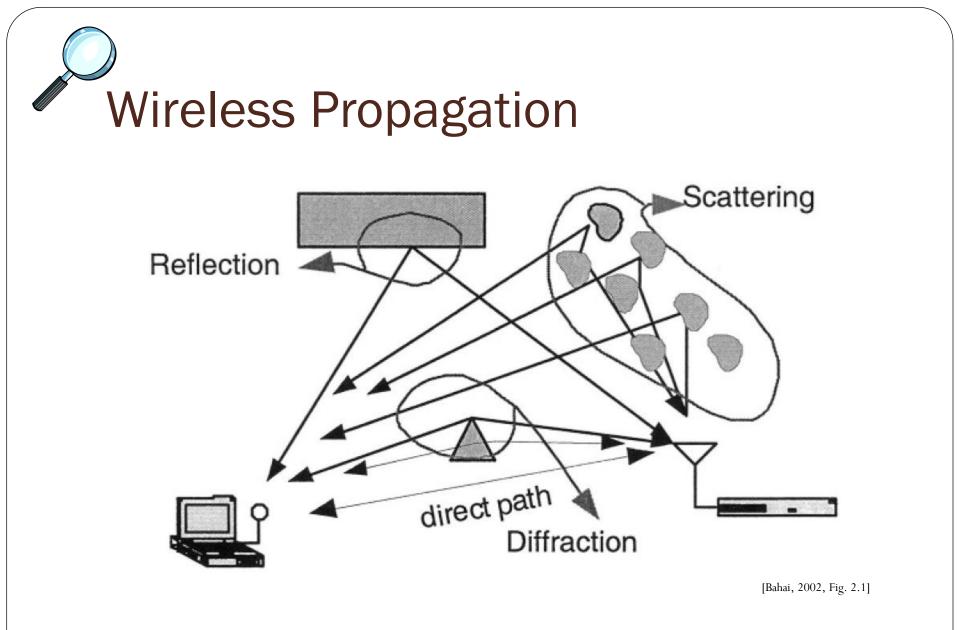

• Impulse Response:

$$h(\tau,t) = \sum_{i=0}^{L-1} \beta_i(t) \delta(\tau - \tau_i)$$

- *L* = number of resolvable paths
- $\beta_i(t) = \text{complex-valued path gain of the } ith path$ 
  - Usually assumed to be independent complex Gaussian processes resulting in Rayleigh fading because each resolvable path is the contribution of a different group of many irresolvable paths.
- $\tau_i$  = time delay of the *i*th path
- Transfer function: H(f,t)

24

L = 16-path exponential power delay profile with a decay factor of 1.0 dB and a time delay separation of 150 ns between adjacent paths (corresponding to the rms delay spread of 0.52 µs). 5 GHz carrier frequency and 4 km/h terminal speed.




#### Adaptive Equalization

- Equalizers must typically have an *estimate* of the channel (impulse or frequency response)
  - Since the wireless channel varies over time, the equalizer must
    - learn the frequency or impulse response of the channel (training)
    - and then update its estimate of the frequency response as the channel changes
- The process of equalizer training and tracking is often referred to as **adaptive equalization**.
- Blind equalizers do not use training
  - Learn the channel response via the detected data only

#### Equalization for Digital Cellular Telephony

- GSM
  - Use adaptive equalizer
  - Equalize echos up to 16 ms after the first signal received
    - Correspond to 4.8 km in distance.
    - One bit period is 3.69 ms. Hence, echos with about 4 bit lengths delay can be compensated
- The direct sequence spreading employed by CDMA (IS-95) obviates the need for a traditional equalizer.
- If the transmission bandwidth is large (for example 20 MHz), the complexity of straightforward high-performance equalization starts to become a serious issue.



#### Three steps towards modern OFDM

- To mitigate multipath problem
   → Use multicarrier modulation (FDM)
- 2. To gain spectral efficiency
  → Use orthogonality of the carriers
- 3. To achieve efficient implementation
   → Use FFT and IFFT